INTEGRATED DISPOSAL FACILITY CHAPTER 3.0 WASTE ANALYSIS PLAN CHANGE CONTROL LOG Change Control Logs ensure that changes to this unit are performed in a methodical, controlled, coordinated, and transparent manner. Each unit addendum will have its own change control log with a modification history table. The "Modification Number" represents Ecology's method for tracking the different versions of the permit. This log will serve as an up to date record of modifications and version history of the unit. # Modification History Table | Modification Date | Modification Number | |-------------------|---------------------| | 6/30/2013 | | | | | This page intentionally left blank. # WA7890008967 Integrated Disposal Facility | 1 | | |---|---------------------| | 2 | CHAPTER 3.0 | | 3 | WASTE ANALYSIS PLAN | | 4 | | | 5 | | # WA7890008967 Integrated Disposal Facility | 1 | | |---|-------------------------------------| | 2 | | | 3 | | | 4 | This page intentionally left blank. | | 5 | | | 1
2
3
4 | | CHAPTER 3.0
WASTE ANALYSIS PLAN | | |------------------|---------|---|----| | 5 | TABL | E OF CONTENTS | | | 6 | | E ANALYSIS [C] | | | 7 | CHEM | ICAL, BIOLOGICAL, AND PHYSICAL ANALYSIS [C-1] | iv | | 8 | WAST | E ANALYSIS PLAN [C-2] | iv | | 9 | 3.0 | INTEGRATED DISPOSAL FACILITY WASTE ANALYSIS PLAN | | | 10 | 3.1 | Description of Unit Processes and Activities | | | 11 | 3.2 | Identification and Classification of Waste | | | 12 | 3.3 | Management of Waste | 8 | | 13 | 3.3.1 | Newly Generated Waste within the IDF | 9 | | 14 | 3.4 | Confirmation Process | 11 | | 15 | 3.4.1 | Pre-Shipment Review | 11 | | 16 | 3.4.2 | Verification | 15 | | 17 | 3.4.3 | Waste Acceptance | 16 | | 18 | 3.4.4 | Selecting Waste Analysis Parameters | 18 | | 19 | 3.4.5 | Selecting Sampling Procedures | 18 | | 20 | 3.4.6 | Selecting A Laboratory, Laboratory Testing, And Analytical Methods | 18 | | 21 | 3.4.7 | Selecting Waste Re-Evaluation Frequencies | 18 | | 22 | 3.4.8 | Special Waste Analysis Procedural Requirements | 18 | | 23 | 3.4.9 | Procedures for Ignitable, Reactive, and Incompatible Waste | 19 | | 24
25 | 3.4.10 | Provisions for Complying With Federal and State Land Disposal Restriction Requirements | 19 | | 26 | 3.4.11 | Off-Specification Waste | 20 | | 27 | 3.5 | Waste Tracking | 20 | | 28 | 3.6 | Recordkeeping | 20 | | 29
30 | 3.7 | References | 20 | | 31 | FIGUE | RES | | | 32 | • | 1. Waste Transfers and Analysis Plan Onsite TSD Units Flow Diagram | 10 | | 33
34
35 | Figure | Vitrification or Alternative Method Transfer and Waste Analysis Plan Process Flow Diagram | 17 | | 36 | TABL | ES | | | 37 | Table 1 | . Chemicals Incompatible With the High Density Polyethylene Liner (in | 10 | | 38
39 | Table 3 | concentrated form)* | | | 40 | raule 2 | 2. I didilectio did Rationale for i hysical beforming | 10 | # 1 WASTE ANALYSIS [C] - 2 This chapter provides information on the chemical, biological, and physical characteristics of the waste - 3 treated for disposal. The information includes descriptions required by WAC 173-303-300(5) contained - 4 in the Waste Analysis Plan for the Integrated Disposal Facility. #### 5 CHEMICAL, BIOLOGICAL, AND PHYSICAL ANALYSIS [C-1] - 6 The primary mission of the IDF will be to dispose of vitrified waste generated on the Hanford Site. This - 7 includes vitrified LAW from the RPP-WTP and DBVS, and low-level radioactive waste. Additionally, - 8 waste generated through IDF operations will be disposed of in IDF. Waste to be disposed of in IDF is - 9 assigned dangerous waste numbers found in Chapter 1.0. # 10 WASTE ANALYSIS PLAN [C-2] - 11 The Waste Analysis Plan for the Integrated Disposal Facility summarizes waste acceptance processes and - contains the following information: unit description, confirmation process, selection of waste analysis - parameters, selection of sampling procedures, selection of a laboratory, laboratory testing, and analytical - methods, selection of waste re-evaluation frequencies, special procedural requirements, and - 15 recordkeeping requirements. | 1 2 | | GLOSSARY | |----------|----------------|---| | 3 | AEA | Atomic Energy Act of 1954 | | 4 | BVW | bulk vitrification waste | | 5 | CAP | corrective action plan | | 6 | CFR | Code of Federal Regulations | | 7 | COLIWASA | composite liquid waste sampler | | 8 | °C | degree Celsius | | 9 | DOE ODD | MG D | | 10 | DOE-ORP | U.S. Department of Energy, Office of River Protection | | 11
12 | DOE-RL
DBVS | U.S. Department of Energy, Richland Operations Office | | 13 | DST | Demonstration Bulk Vitrification System double-shell tank | | 14 | DST | dodoic-shell tank | | 15 | Ecology | Washington State Department of Ecology | | 16 | 200083 | washington state 2 epartment of Zeology | | 17 | IDF | Integrated Disposal Facility | | 18 | ILAW | immobilized low-activity waste | | 19 | LDR | land disposal restriction | | 20 | | | | 21 | NDE | nondestructive examination | | 22
23 | DDE | managed mastestive acuiomant | | 23
24 | PPE | personal protective equipment | | 25 | QA | quality assurance | | 26 | QC | quality control | | 27 | Q. | quality control | | 28 | RCRA | Resource Conservation and Recovery Act of 1976 | | 29 | RCW | Revised Code of Washington | | 30 | RPP-WTP | River Protection Project-Waste Treatment Plant | | 31 | | | | 32 | SWITS | Solid Waste Information Tracking System | | 33 | TDII | 4 | | 34
35 | TRU
TSCA | transuranic Toxic Substances Control Act of 1976 | | 36 | TSD | treatment, storage, and/or disposal | | 37 | 100 | rounion, storago, and or disposar | | 38 | WAC | Washington Administrative Code | | 39 | WAP | waste analysis plan | | 40 | | | | | | | # **METRIC CONVERSION CHART** Into metric units Out of metric units | If you know | Multiply by | To get | If you know | Multiply by | To get | |-----------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------| | Length | | | Length | | | | inches | 25.40 | millimeters | millimeters | 0.03937 | inches | | inches | 2.54 | centimeters | centimeters | 0.393701 | inches | | feet | 0.3048 | meters | meters | 3.28084 | feet | | yards | 0.9144 | meters | meters | 1.0936 | yards | | miles (statute) | 1.60934 | kilometers | kilometers | 0.62137 | miles (statute) | | | Area | | Area | | | | square inches | 6.4516 | square centimeters | square centimeters | 0.155 | square inches | | square feet | 0.09290304 | square meters | square meters | 10.7639 | square feet | | square yards | 0.8361274 | square meters | square meters | 1.19599 | square yards | | square miles | 2.59 | square
kilometers | square
kilometers | 0.386102 | square miles | | acres | 0.404687 | hectares | hectares | 2.47104 | acres | | | Mass (weight) | | | Mass (weight) | | | ounces (avoir) | 28.34952 | grams | grams | 0.035274 | ounces (avoir) | | pounds | 0.45359237 | kilograms | kilograms | 2.204623 | pounds (avoir) | | tons (short) | 0.9071847 | tons (metric) | Tons (metric) | 1.1023 | tons (short) | | | Volume | | Volume | | | | ounces
(U.S., liquid) | 29.57353 | milliliters | milliliters | 0.033814 | ounces
(U.S., liquid) | | quarts
(U.S., liquid) | 0.9463529 | liters | liters | 1.0567 | quarts
(U.S., liquid) | | gallons
(U.S., liquid) | 3.7854 | liters | liters | 0.26417 | gallons
(U.S., liquid) | | cubic feet | 0.02831685 | cubic meters | cubic meters | 35.3147 | cubic feet | | cubic yards | 0.7645549 | cubic meters | cubic meters | 1.308 | cubic yards | | | Temperature | | Temperature | | | | Fahrenheit | subtract 32
then
multiply by
5/9ths | Celsius | Celsius | multiply by 9/5ths, then add 32 | Fahrenheit | | | Energy | | Energy | | | | kilowatt hour | 3,412 | British thermal unit | British thermal unit | 0.000293 | kilowatt hour | | kilowatt | 0.94782 | British thermal unit per second | British thermal unit per second | 1.055 | kilowatt | | | Force/Pressure | | Force/Pressure | | | | pounds (force)
per square inch | 6.894757 | kilopascals | kilopascals | 0.14504 | pounds per square inch | 06/2001 Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Third Ed., 1993, Professional Publications, Inc., Belmont, California. #### 1 3.0 INTEGRATED DISPOSAL FACILITY WASTE ANALYSIS PLAN - 2 Pursuant to WAC 173-303-300(5) this waste analysis plan (WAP) documents the waste acceptance - 3 process, sampling methodologies, analytical techniques, and overall processes that will be undertaken for - 4 mixed waste accepted for disposal at the Integrated Disposal Facility (IDF). . Mixed waste disposed at - 5 the IDF will be limited to vitrified low-activity waste (LAW) from the RPP-WTP and DBVS and mixed - 6 waste generated by IDF operations. (see Chapter 1, Part A Form). Vitrified LAW generated by RPP- - 7 WTP is known as Immobilized Low Activity Waste (ILAW) and generated by DBVS is known as Bulk - 8 Vitrified Waste (BVW). The IDF will be located in the 200 East Area of the Hanford Facility. - 9 The IDF also will receive low-level waste for disposal. Mixed waste will not be placed in the low-level - waste portion of the IDF. The requirements of this WAP are applicable to mixed waste and are not - applicable to the low-level radioactive waste. The term 'treatment, storage, and/or disposal (TSD) unit' is - used throughout this WAP to refer to the IDF. Activities will be performed by the IDF operating - organization, waste acceptance organization, or its delegated representative. - Although the treatment and disposal of radioactive waste (i.e., source, special nuclear, and by-product - 15 materials as defined by the *Atomic Energy Act of 1954*) are not within the scope of *Resource* - 16 Conservation and Recovery Act (RCRA) of 1976 or WAC 173-303, information is provided for general - 17 knowledge. #### 18 3.1 Description of Unit Processes and Activities - 19 The IDF will be a single, expandable disposal facility constructed to RCRA Subtitle C standards, half of - 20 which is for disposal of mixed waste the other half will be for disposal of low-level waste. Initial capacity - for mixed waste disposal is 82,000 cubic meters of waste with an ultimate capacity of up to 450,000 cubic - 22 meters of waste. Disposal capacity beyond the initial 82,000 cubic meters will require a modification to - 23 the Part B Permit. The mixed waste types to be disposed in the IDF include vitrified LAW from the - 24 RPP-WTP and DBVS. Additionally, mixed waste generated by IDF operations will be disposed of in - 25 IDF. - The mission of the RCRA portion of the IDF is to provide an approved disposal facility for the - 27 permanent, environmentally safe disposition of mixed waste and RCRA waste. - 28 For ILAW, and BVW the container packaging and handling will be designed to maintain containment of - 29 each waste type, limit intrusion, and limit human exposure at the IDF. ILAW containers will be - transported from the RPP-WTP to the IDF using a tractor-trailer system. BVW will be transported from - 31 the DBVS staging area to IDF using a similar system. Transport of the ILAW and BVW to the landfill - will occur along a pre-determined route. - 33 The lined landfill will have a leachate collection and removal system. The leachate collection tanks will - be operated in accordance with the generator provisions of WAC 173-303-200 and are not subject to this - 35 WAP. 41 42 43 36 Additional information is located in Chapter 1.0 (IDF Part A) and Chapter 4.0 (Process Information). #### 37 3.2 Identification and Classification of Waste - 38 The ILAW, BVW, and newly generated mixed waste will be accepted for disposal. The mixed waste - disposed of at the IDF is received from waste generated within IDF, and two other Hanford Facility TSD - 40 units (RPP-WTP and DBVS). The following waste will not be accepted for disposal at this TSD unit: - Waste is not accepted for disposal when the waste contains free-standing liquid unless all free-standing liquid: - Has been removed by decanting or other methods. - Has been mixed with sorbent or stabilized (solidified) so that free-standing liquid is no longer observed. - o Otherwise has been eliminated. Ocontainer is very small, such as an ampoule. 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 2223 24 25 2627 28 29 30 31 32 33 34 - Container is a labpack and is disposed in accordance with WAC 173-303-161 or 40 CFR 264.316. - o Container is designed to hold free liquids for use other than storage, such as a battery or capacitor. There could be cases in which small amounts of residual liquids are present in mixed waste containers because condensate has formed following packaging or free liquids remain in debris items (e.g., pumps, tubing) even after draining. When it is not practical to remove this residual liquid, the free liquid must be eliminated to the extent possible by adding a quantity of sorbent sufficient to sorb all residual liquids. - Free liquid is determined by SW-846, *Test Methods for Evaluating Solid Waste: Physical/Chemical Method*, Method 9095 (Paint Filter Liquids Test) [WAC 173-303-140(4)(b) and 40 CFR 264.314(d)] only for waste that has the potential for free liquid formation. - Gaseous waste not accepted for disposal if the is waste packaged at a pressure in excess of 1.5 atmospheres at 20°C. - Pyrophoric waste is not accepted for disposal. Waste containing less that 1 weight percent pyrophoric material partially or completely dispersed in each package is not considered pyrophoric for the purposes of this requirement. - Solid acid waste is not accepted for disposal [WAC 173-303-140(4)(c)]. - Extremely hazardous waste that does not meet WAC 173-303-140(4)(d) is not accepted for disposal. Extremely hazardous waste that has been treated could be disposed in accordance with Revised Code of Washington (RCW) 70.105.050(2), "Hazardous Waste Management." - Organic/carbonaceous waste that does not meet WAC 173-303-140(4)(d) is not accepted for disposal. - Waste not meeting the LDR treatment standards is not accepted for disposal [40 CFR 268 and WAC 173-303-140(4)]. - Waste streams will be evaluated during pre-shipment review to ensure that the waste streams do not contain constituents incompatible with the liner system in concentration sufficient to degrade the liner. Table 1 provides a list of chemicals shown to be incompatible with the liner material at 100% concentrations (WHC-SD-WM-TI-714). In general, mixed waste that meets federal and state treatment standards would be compatible with the TSD unit liner system. Waste accepted at the IDF will be compatible with the liner. Constituents in Table 1 will not be accepted for disposal (refer to Section 3.4.9 for waste stream compatibility). #### 3.3 Management of Waste - 35 The ILAW, BVW, and newly generated wastes (see Section 3.3.1) generated during normal operations of - this TSD unit are accepted at this TSD unit for disposal. The two onsite TSD units (RPP-WTP and - 37 DBVS) transferring/shipping waste to this TSD unit hereafter are referred to as the 'generator' unless - 38 otherwise denoted in this WAP. The waste acceptance process for transfers from the generator is - identified in Figure 1. - 40 Written waste tracking procedure(s) are implemented to ensure waste received at the TSD unit matches - 41 the manifest or transfer papers, to ensure that the waste is tracked though the TSD unit to final - disposition, and to maintain the information required in WAC 173-303-380. The waste tracking process - provides a mechanism to track waste through a uniquely identified container. The unique identifier is a - barcode (or equivalent) that is recorded in the Solid Waste Information Tracking System (SWITS). This - 45 mechanism encompasses the waste acceptance process, the movement of waste, the processing of waste, - and management of the waste. - 1 The container identification number provides traceability between the TSD unit and the hard copy of - 2 records that are maintained as part of the operating record to ensure information relative to the location, - 3 quantity, and physical and chemical characteristics of the waste are available. - 4 The following sections describe the process for waste acceptance and the different types of information - 5 and knowledge reviewed/required during the acceptance process. The process for management of waste - 6 is described in Section 3.4. # 7 3.3.1 Newly Generated Waste within the IDF - 8 This TSD unit generates mixed waste as a result of operational (e.g., chemical, radiological) activities. - 9 These activities include, transfer functions along with inspection, decontamination, cleanup, maintenance - tasks and leachate collection. The IDF generated operational waste will be maintained in accordance with - generator provisions of WAC 173-303-200 and WAC 173-303-600(3)(d). Any newly generated waste - 12 (except leachate) not meeting IDF waste acceptance criteria will be designated and sent to another - permitted TSD or to a 90 day accumulation area. IDF leachate will be managed in accordance with - WAC 173-303-200 and transferred to the Liquid Effluent Retention Facility/Effluent Treatment Facility - 15 (LERF/ETF) (or other permitted TSD) for treatment. Solids or residuals resulting from IDF leachate - treatment may be designated/packaged and sent back to the IDF for burial or to another permitted TSD. Figure 1. Waste Transfers and Analysis Plan Onsite TSD Units Flow Diagram. Table 1. Chemicals Incompatible with the High Density Polyethylene Liner (in concentrated form)* | <u> </u> | | |------------------------|------------| | Chemical | CAS Number | | Amyl chloride | 543-59-9 | | Aqua regia | 8007-56-5 | | Bromic acid | 15541-45-4 | | Bromobenzene | 108-86-1 | | Bromoform | 75-25-2 | | Calcium bisulfite | 13780-03-5 | | Calcium sulfide | 20548-54-3 | | Diethyl benzene | 25340-17-4 | | Diethyl ether | 60-29-7 | | Bromine | 7726-95-6 | | Chlorine | 7782-50-5 | | Fluorine | 7782-41-4 | | Ethyl chloride | 75-00-3 | | Ethylene trichloride | 79-01-6 | | Nitrobenzene | 98-95-3 | | Perchlorobenzene | 118-74-1 | | Propylene dichloride | 78-87-5 | | Sulfur trioxide | 7446-11-9 | | Sulfuric acid (fuming) | 8014-95-7 | | Thionyl chloride | 7719-09-7 | | Vinylidene chloride. | 75-35-4 | CAS = Chemical Abstract Service. 232425 ^{*} WHC-SD-WM-TI-714 #### 1 3.4 Confirmation Process - 2 WAC 173-303-300(1) requires confirmation on mixed waste before acceptance of waste into a waste - 3 management unit. The confirmation process consists of two parts, pre-shipment review, and verification. - 4 Confirmation activities are performed in accordance with TSD unit-specific governing documentation. - 5 The confirmation process is detailed in Figure 2 for ILAW and BVW. #### 3.4.1 Pre-Shipment Review 6 27 30 31 - 7 Pre-shipment review takes place before waste can be scheduled for transfer or shipment to this TSD unit. - 8 The review focuses on whether the waste stream is defined accurately and meets the TSD unit waste - 9 acceptance criteria and whether the LDR status is determined correctly. Only waste determined to be - acceptable for storage (see Section 3.4.1.2.2) and/or disposal is scheduled. This determination is based on - the information provided by the generator. The pre-shipment review consists of waste stream approval - 12 and the waste shipment approval process. The following sections discuss the pre-shipment review - process. The information obtained during the pre-shipment review, at a minimum, includes all - information necessary to safely dispose of the waste. The pre-shipment review ensures the waste is - characterized and the data provided qualify as 'acceptable knowledge' (Section 3.4.1.4). # 16 **3.4.1.1 Pre-Shipment Review of Wastes** - 17 Pre-shipment review for ILAW and BVW waste containers will take place at RPP-WTP and the DBVS - staging area respectively before either type of containers can be scheduled for transfer to the IDF. The - 19 review will focus on whether the waste stream is defined accurately, meets the waste acceptance criteria, - and the land disposal restrictions (LDR) status was determined correctly. Only waste determined to be - 21 acceptable for storage (see Section 3.4.1.2.2) and/or disposal will be scheduled. This determination will - be based on the information provided by the generator. The pre-transfer review will consist of the waste - profile documentation and waste transfer approval process. The following sections discuss the - 24 pre-transfer review process. ILAW and BVW containers received for land disposal will be at least 90% - 25 full. The information obtained from the generator, at a minimum, will contain five elements: - 26 (1) Documentation to ensure waste can be managed pursuant to the Part A. Form 3. - (2) Documentation to ensure the waste is not a prohibited waste in accordance with Section 3.2, - 28 (3) A determination if the waste is an ignitable, reactive, or incompatible waste as defined in WAC 173-303-040. - (4) Documentation that waste meets LDR requirements of 40 CFR 268 and WAC 173-303-140. - (5) Operational restrictions on acceptance of waste. - During the waste profile documentation process for ILAW and BVW containers, the generator will have - the responsibility to provide relevant information pertaining to the proper management of the waste. - 34 Characterization information pertaining to the treatment of ILAW and BVW will be obtained during the - 35 waste profile documentation process. #### 36 **3.4.1.2** Waste Stream Approval Process for Wastes - 37 The waste stream approval process consists of reviewing stream information supplied on a waste stream - 38 profile and supporting documentation to allow receipt of the waste into the IDF. Waste stream - 39 compatibility (i.e., compatibility between individual waste streams and compatibility between waste - 40 streams and landfill design and construction parameters) will be assessed on a case-by-case basis. - 41 Criteria for assessing and determining compatibility will be identified in either the facility Waste - 42 Acceptance Criteria, Waste Analysis Plan, or other protocol or procedure as appropriate. #### 43 3.4.1.2.1 Waste Stream Approval for ILAW and BVW - 44 During the waste profile documentation process, the IDF waste acceptance organization will obtain the - 45 following information: - Description of waste generating process - Characterization data 2 3 4 5 6 8 9 10 11 12 13 16 17 18 19 25 33 - Dangerous waste numbers - LDR data (as specified in Section 3.4.10) - Composition of ILAW and BVW including regulated constituents of concern (refer to Chapter 1.0 of the permit application -Part A Form) - 7 The waste profile documentation process will be as follows. - 1. Appropriate generator fills out waste profile documentation. - 2. The IDF designated waste acceptance organization reviews the waste profile information against the waste acceptance criteria for each ILAW or BVW transfer. - 3. If discrepancies are noted, the IDF designated waste acceptance organization requests additional information from the generator to address discrepancies for either: (1) inconsistent information and (2) information not constituting acceptable knowledge (refer to Section 3.4.1.4.1). - Information (waste profile documentation) is resubmitted by the generator addressing concerns in Item 3. - If concerns are addressed, waste profile documentation is approved. - If concerns are not addressed and met, waste profile documentation is not approved until concerns are corrected. # 3.4.1.2.2 Waste Stream Approval for Newly Generated Mixed Waste - 20 The waste stream approval process for wastes generated during IDF operations (except for leachate) - 21 consists of reviewing stream information supplied on a waste stream profile and supporting - 22 documentation. The waste stream profile requires the following supporting documentation: - Generator information (e.g., name, address, point-of-contact, telephone number) - Waste stream name - Waste generating process description - Waste numbers - Chemical characterization information (e.g., characterization method(s), chemicals present, concentration ranges) - Designation information - LDR information including identification of underlying hazardous constituents if applicable - Waste type information (e.g., physical state, adsorbents used, inert materials, stabilizing agents used) - Packaging information (e.g., container type, maximum weight, size). - 34 Attachments could consist of container drawings, process flow information, analytical data, etc. - In some cases, such as variable waste streams, the waste stream profile information could be general in - 36 nature. In these cases, more detailed information is gathered during the waste shipment approval process - on a per shipment basis. This information is reviewed against the TSD unit waste acceptance criteria to - 38 ensure the waste is acceptable for receipt. If conformance issues are found during this review, additional - information is requested that could include analytical data or a sample to be analyzed. - 40 If the waste cannot be received, the TSD unit pursues acceptance of the waste at an alternate TSD unit. - 41 Once the waste meets the waste acceptance criteria, the TSD unit assigns the profile to a waste - 42 specification record and establishes a waste verification frequency based on the requirements found in - 43 Section 3.4.2. Profile information is re-evaluated as discussed in Section 3.4.7. # 1 3.4.1.3 Waste Transfer/Shipment Approval Process - 2 After the appropriate generator has received the waste profile documentation approval from IDF (refer to - 3 Section 3.4.1.2.1), the generator waste transfer will be subjected to the waste transfer approval process. - 4 Only those ILAW and BVW containers approved under the waste profile documentation as part of the - 5 waste transfer approval process will be transferred to the IDF. During the waste transfer approval - 6 process, the IDF designated waste acceptance organization will obtain the following information. - 7 For each ILAW or BVW container transfer that is a candidate for disposal in the TSD unit, the generator - 8 will provide the following information: - Container identification number - 10 Profile number - Waste description - Generator information (e.g., name, address, point-of-contact, telephone number) - Container information (e.g., type, size, weight) - Waste numbers 16 18 19 20 21 22 23 24 2526 27 28 29 - LDR certification - Packaging materials and quantities - 17 The ILAW and BVW container transfer approval process will be as follows. - 1. The generator obtains information from existing database, operating record, or generator records on each ILAW container to be transferred under the approved waste profile documentation. - 2. Information is submitted to the TSD unit designated waste acceptance organization by the generator and is reviewed for the following: - Consistency with approved waste profile documentation. - Consistency with waste acceptance criteria within the IDF. - 3. If discrepancies are identified, the TSD unit designated waste acceptance organization will request additional information from the generator to address any discrepancies. - 4. Information (waste package documentation) is resubmitted by the generator addressing concerns in Item 3. - 5. If discrepancies are addressed, this information is forwarded to the TSD waste acceptance organization. - 6. If discrepancies are not addressed, transfer is not approved until discrepancies are corrected. #### 31 3.4.1.4 Acceptable Knowledge Requirements - 32 The TSD unit ensures that all information used to make waste management decisions is based on - 33 adequate characterization data as described in the following sections. The TSD unit evaluates the data to - 34 ensure that the data are adequate acceptable knowledge for management of the waste. #### 35 3.4.1.4.1 General Acceptable Knowledge Requirements - 36 One or more of the following types of information could be considered, provided that the information is - of sufficient quality to demonstrate compliance with applicable waste acceptance criteria: - Mass balance from a controlled process that has a specified output for a specified input. - Material safety data sheet on chemical products. - Test data from a surrogate sample. - Analytical data on the waste or a waste from a similar process. - In addition, acceptable knowledge requirements can be met using a combination of analytical data or screening results and one and/or more of the following information: - Interview information - 4 Logbooks - 5 Procurement records - Qualified analytical data - Radiation work package - Procedures and/or methods - Process flow charts - Inventory sheets 13 37 38 39 40 41 - Vendor information - Mass balance from an uncontrolled process (e.g., spill cleanup) - Mass balance from a process with variable inputs and outputs (e.g., washing/cleaning methods) - 14 If the information is sufficient to quantify the constituents of regulatory concern and to determine waste - characteristics as required by the regulations and TSD unit waste acceptance criteria, the information is - 16 considered acceptable. Adequate acceptable knowledge includes (1) general waste knowledge - 17 requirements and/or (2) LDR waste knowledge requirements. - 18 **(1) General waste knowledge requirements**. At a minimum, the generator supplies enough information for the waste to be managed at this TSD unit (refer to Section 3.4.1.1). The minimum level of acceptable knowledge consists of designation data where the constituents causing a waste number to be assigned are quantified and that data address any TSD unit operational parameters necessary for proper management of the waste. - When process knowledge indicates that constituents, which if present in the waste might cause the waste to be regulated, are input to a process, but not expected to be in the waste, sampling and analysis must be performed to ensure the constituents do not appear in the waste above applicable regulatory levels. This requirement can be met through chemical screening. This sampling and analysis are required only for initial characterization of the waste stream. - When the available information does not qualify as acceptable knowledge or is not sufficient to - 29 characterize a waste for management, the sampling and testing methods outlined in - WAC 173-303-110 are used to determine whether a waste designates as ignitable, corrosive, reactive, - and/or toxic and whether the waste contains free liquids as applicable. If the analysis is performed to - complete characterization after acceptance of the waste by the TSD unit, this WAP governs the - 33 sampling and testing requirements. - 34 **(2) LDR waste knowledge.** The TSD unit operating record contains all information required to document that the appropriate treatment standards have been met or will be met after the waste is treated unless otherwise excepted in this section. - Both ILAW and BVW will be LDR compliant waste streams prior to acceptance at the IDF. Vitrification at the WTP and DBVS will facilitate LDR compliance for the majority of the mixed waste disposed of at IDF. IDF operational waste will be treated as needed to meet LDR at another TSD other than WTP or the DBVS - This TSD unit may use analytical data as necessary to ensure that the applicable requirements found in 40 CFR 268.7 and WAC 173-303-140(4) are met. #### 3.4.1.4.2 Methodology to Ensure Compliance with LDR Requirements - 2 The generators are subject to LDR requirements and are required to submit all information notifications - and certifications described in WAC 173-303-380(1), (j), (k), (n), and (o). Mixed waste not meeting the - 4 treatment standards cannot be disposed at this TSD unit. - 5 The following are general requirements for certification or information notification. - The waste is subject to LDR and the waste has been treated. The generator supplies the appropriate LDR certification information (40 CFR 268). - The waste is subject to LDR and the generator has determined that the waste meets the LDR as generated. The generator develops the certification based on process knowledge and/or analytical data and supplies the appropriate LDR certification information necessary to demonstrate compliance with the LDR treatment standards of 40 CFR 268 and WAC 173-303-140. State-only LDRs do not require this type of certification. - 13 When demonstrating that a concentration-based LDR treatment standard has been met, a representative - sample of the waste must be submitted for analysis. This sample could be taken by the treatment facility - or the generator and is required to comply with the LDR treatment standards contained in 40 CFR 268.40 - and 268.48 for underlining hazardous constituents. #### 17 3.4.2 Verification - Verification is an assessment performed by this TSD unit to substantiate that the waste received is the - same as represented by the analysis supplied by the generator for the pre-shipment review. Verification - for ILAW and BVW containers will contain one element, a 100% container receipt inspection. - 21 Physical/chemical screening will not be performed on the ILAW or BVW containers. Waste is not - accepted by the TSD unit for disposal until the required elements of verification have been completed, - 23 including evaluation of any data obtained from verification activities. All conformance issues identified - 24 during the verification process are resolved in accordance with Section 3.4.3. Verification activity results - will be documented by the IDF designated waste acceptance organization. - 26 Sampling and analysis for non-vitrification mixed waste (e.g., treatment residues from treatment of IDF - leachate that are returned to IDF for disposal) will not occur at the IDF but will occur at another permitted - 28 TSD. 6 7 8 9 10 11 12 #### 29 **3.4.2.1 Container Receipt Inspection** 30 Container receipt inspection is a mandatory element of the confirmation process. #### 31 3.4.2.1.1 Container Receipt Inspection for ILAW and BVW - 32 The ILAW and BVW container receipt inspection will be performed by IDF designated waste acceptance - 33 organization. The following criteria will be evaluated during container receipt inspection: - Number of containers - Size of containers - Labels - Container integrity - 38 Discrepancies identified during the container receipt inspection will be communicated to generator. - 39 Discrepancies will be resolved before the containers are unloaded. Once the discrepancies are resolved, - 40 the ILAW containers will be unloaded and disposed. Should discrepancies remain unresolved after - 41 30 days, Ecology will be notified and daily walk around inspections conducted. #### 42 3.4.2.2 Physical Screening Process - The ILAW and BVW containers are not required to be physically screened because the generator verifies - the waste meet the waste acceptance criteria for IDF. # 1 3.4.2.3 Chemical Screening Process - 2 Chemical screening is a verification element for containerized mixed waste. The ILAW and BVW - 3 containers are not required to be chemically screened because the generator verifies the waste meet the - 4 waste acceptance criteria for IDF. # 5 3.4.3 Waste Acceptance - 6 Initial acceptance of waste occurs only after the confirmation process described in Section 3.4 is - 7 complete. Conformance issues identified during the confirmation process are documented and managed - 8 in accordance with Section 3.4.1.2.2. Conformance issues that must be corrected before waste acceptance - 9 include the following: - Waste that is not identified in the Part A, Form 3 (Chapter 1.0). - Waste does not match approved profile documentation. - Designation, physical, and/or chemical characterization discrepancy. - Incorrect LDR paperwork. - Packaging discrepancy. - Manifest discrepancies as described in WAC 173-303-370(4). - 16 For waste shipments with unresolved conformance issue(s) that exceed 90 days, this TSD will notify - 17 Ecology at least once per calendar quarter. IDF = Integrated Disposal Facility IDFWAO = IDF Waste Acceptance Organization 1 Figure 2. Vitrification or Alternative Method Transfer and Waste Analysis Plan Process Flow Diagram # 1 3.4.4 Selecting Waste Analysis Parameters - 2 The ILAW and BVW containers will be managed without the need to perform sampling and analysis at - 3 the TSD. No parameters will be required to be identified. # Table 2. Parameters and Rationale for Physical Screening | Parameter | Method* | Rationale for selection | |----------------------------|--------------|---------------------------------------------------------------| | Nondestructive examination | Field method | Confirm consistency between waste and shipping documentation. | ^{*}Procedures based on manufacturer's recommended methodology unless otherwise noted. When regulations require a specific method, the method is followed. SW-846, *Test Methods for Evaluating Solid Waste*, latest edition, U.S. Environmental Protection Agency, Washington, D.C. WAC 173-303, "Dangerous Waste Regulations #### 5 3.4.5 Selecting Sampling Procedures - 6 Any required sampling and analysis of the ILAW and BVW containers will be performed at the generator - 7 before the containers are closed. Sampling and analysis for IDF operational mixed waste will not occur at - 8 the IDF but at another Hanford TSD. # 9 3.4.6 Selecting A Laboratory, Laboratory Testing, and Analytical Methods - Any required sampling and analysis of the ILAW and BVW containers will be performed before the - containers are closed at the RPP-WTP and DBVS respectively. No Laboratory, laboratory testing or - 12 analytical methods will be required to be identified. # 13 3.4.7 Selecting Waste Re-Evaluation Frequencies - 14 The re-evaluation (repeat and review) frequency for ILAW to review a waste generating process and - associated waste profile documentation is every two years, or more often if conditions in - 16 WAC 173-303-300(4)(a) arise. Since BVW will be generated over a shorter time period, frequency for - 17 review will be every six months. - When a waste generating process and associated waste profile documentation is re-evaluated, IDF - 19 personnel or designated waste acceptance organization could request the generator to do one or more of - 20 the following: 25 27 4 - Verify the current waste profile documentation is accurate. - Supply new waste profile documentation. - When a waste profile is re-evaluated, the TSD unit could request the organization generating the waste to - 24 do one of the following: - Verify the current waste profile is accurate. - Supply a new waste profile. - Submit a sample for parameter analysis. #### 28 3.4.8 Special Waste Analysis Procedural Requirements - 29 Special procedural requirements for the IDF will include procedures for ignitable, reactive, and - 30 incompatible waste, and provisions for complying with federal and state LDR requirements. This section - 31 discusses any special process requirements for receiving mixed waste at this TSD unit. #### 1 3.4.9 Procedures for Ignitable, Reactive, and Incompatible Waste - 2 Waste stream compatibility (i.e., compatibility between individual waste streams and compatibility - 3 between waste streams and landfill design and construction parameters) and waste stream ignitability will - 4 be assessed on a case-by-case basis. Criteria for assessing and determining compatibility and ignitability - 5 will be identified in either the facility Waste Acceptance Criteria, Waste Analysis Plan, or other protocol - 6 or procedure as appropriate. Should these wastes be accepted, appropriate administrative and engineering - controls will be implemented as necessary. - 8 This TSD unit does not accept reactive waste (refer to Section 3.2 and Section 3.4.1.1). The TSD unit - 9 ensures that reactive waste is not accepted at this TSD unit in the following manner. - Pre-shipment review will identify whether the waste is reactive based on the definition contained in WAC 173-303-040. - If analysis of the characterization information leads to a conclusion that the waste is a reactive waste, the containers, or waste will not be accepted. - The types of prohibited waste not accepted at this TSD unit as listed in Section 3.2. # 3.4.10 Provisions for Complying With Federal and State Land Disposal Restriction Requirements - 17 State-only and federal LDR requirements restrict the land disposal of certain types of waste subject to - 18 RCRA and RCW 70.105, "Hazardous Waste Management", as amended. Waste managed on the Hanford - 19 Facility falls within the purview of these LDRs per 40 CFR 268 and WAC 173-303-140. The treatment - standards for mixed waste disposed at IDF are based on the dangerous waste numbers accepted as - 21 documented on the IDF Part A as well as additional information necessary for identifying treatability - 22 groups etc. 7 10 1112 13 15 16 42 45 - 23 The IDF will not perform sampling and analysis to determine compliance with treatment standards - 24 contained in 40 CFR 268. Any sampling and analysis results required to demonstrate compliance with - 25 concentration-based treatment standards contained in 40 CFR 268.40 will be obtained by IDF waste - 26 acceptance organization from the generator, during the waste profile documentation process to meet the - 27 requirements of 40 CFR 268.7(c)(2). Sampling and analysis results will be placed into the unit-specific - 28 portion of the Hanford Facility operating record. Other LDR records are identified in - 29 WAC 173-303-380(1)(m) and will be obtained from the generator, by IDF personnel as part of either the - 30 waste profile documentation process or the waste transfer approval process. The treated waste must meet - all applicable LDRs to be accepted for disposal at the IDF. IDF will obtain the LDR certification from - 32 the treatment unit. - 33 Mixed waste constituents that are subject to LDRs are identified in 40 CFR 268.40 by reference in - 34 WAC 173-303-140(2), the extremely hazardous waste disposal requirements for DOE facilities contained - 35 in RCW 70.105.050(2), and the state-only LDRs contained in WAC 173-303-140(4)(b)-(d). The mixed - waste must meet certain treatment standards, as specified in 40 CFR 268.40, RCW 70.105.050(2), and - WAC 173-303-140(4)(b)-(d), if the waste is to be land disposed. Any waste requiring LDR treatment - must be treated prior to acceptance into the IDF. - 39 State-only LDRs for mixed waste will be met in the following manner: - Extremely hazardous waste disposal requirements in RCW 70.105.050(2) concerning "all reasonable methods" will be met by the treatment performed to meet 40 CFR 268, - WAC 173-303-140(4)(b)-(d), and DOE requirements for disposal. If no treatment is required to - meet 40 CFR 268, WAC 173-303-140(4)(b)-(d), or DOE requirements, no treatment is required to dispose of extremely hazardous waste at the IDF. - Special requirements for bulk and containerized liquids in WAC 173-303-140(4)(b) are identical to the landfill requirements contained in 40 CFR 264.314. - For mixed waste, including the provisions when to perform the paint filter test, these requirements are described in Section 3.2 of the WAP. - Solid acid waste requirements in WAC 173-303-140(4)(c) can be met through knowledge of the treatment process. Sampling and analysis following treatment is not required to meet this state-only LDR. Disposal of treated solid acid waste still displaying the WSC2 characteristic can occur only when the waste is treated to reduce the harmful properties or characteristics of the waste. - Organic/Carbonaceous waste prohibition requirements in WAC 173-303-140(4)(d) do not apply to the Hanford Facility because the Hanford Facility is operating under WAC 173-303-140(4)(d)(iii), in accordance with a sitewide 1,609 kilometers (1,000-mile) inapplicability certification. Sampling and analysis is not required to determine the organic/carbonaceous content of a mixed waste. - Ecology allows treatment of Organic/Carbonaceous waste in lieu of meeting the inapplicability certification requirements WAC-173-303-140(4)(d)(iii) through macro-encapsulation for hazardous debris only. #### 3.4.11 Off-Specification Waste - 17 Off-Specification ILAW or BVW is waste not meeting the waste acceptance criteria as described in - 18 Section 3.4, Confirmation Process. ILAW or BVW streams determined to be off-specification may be - 19 temporarily stored in the RCRA lined portion of the IDF pending resolution of discrepancy or return to - 20 generating TSD as long as these wastes meet LDR. ILAW and BVW may be temporarily stored in the - 21 RCRA lined portion of the IDF, provided the temperature administrative control limit is not exceeded, - 22 until sufficiently cool for disposal. # 23 3.5 Waste Tracking 3 4 5 6 7 8 9 10 11 12 13 14 1516 28 29 30 33 34 35 36 - 24 The IDF will monitor and record the placement of waste packages. At the time of final placement of each - 25 package, the position and serial number of the package will be logged. # 26 3.6 Recordkeeping - 27 Recordkeeping requirements that will be applicable to this WAP are as follows: - Confirmation records described in Section 3.4 will be maintained in accordance with Condition II.I.1.b of the Hanford Facility RCRA Permit, Dangerous Waste Portion (Ecology 2001). - Waste profile documentation described in Section 3.4.1.2.1 will be maintained in accordance with Condition II.I.1.j of the Hanford Facility RCRA Permit, Dangerous Waste Portion. - LDR records described in Section 3.4.10 will be maintained in accordance with WAC 173-303-380(1)(m) in the IDF unit-specific portion of the Hanford Facility operating record. #### 3.7 References - Ecology, 2001, "Hanford Facility RCRA Permit, Dangerous Waste Portion", Washington State Department of Ecology, Olympia, Washington as amended. - 39 SW-846, *Test Methods for Evaluating Solid Waste: Physical/Chemical Method*, latest edition, Office of Solid Waste, U.S. Environmental Protection Agency, Washington, D.C. - WHC-SD-WM-TI-714, *High-Density Polyethylene Liner Chemical Compatibility for Radioactive Mixed Waste Trenches*, 1995, Westinghouse Hanford Company, Richland, Washington.